Improved Estimation in Time Varying Models
نویسندگان
چکیده
Locally adapted parameterizations of a model (such as locally weighted regression) are expressive but often suffer from high variance. We describe an approach for reducing this variance, based on the idea of estimating simultaneously a transformed space for the model and locally adapted parameterizations expressed in the new space. We present a new problem formulation that captures this idea and illustrate it in the important context of time varying models. We develop an algorithm for learning a set of bases for approximating a time varying sparse network; each learned basis constitutes an archetypal sparse network structure. We also provide an extension for learning task-specific bases. We present empirical results on synthetic data sets, as well as on a BCI EEG classification task.
منابع مشابه
Long-term Iran's inflation analysis using varying coefficient model
Varying coefficient Models are among the most important tools for discovering the dynamic patterns when a fixed pattern does not fit adequately well on the data, due to existing diverse temporal or local patterns. These models are natural extensions of classical parametric models that have achieved great popularity in data analysis with good interpretability.The high flexibility and interpretab...
متن کاملA Robust Adaptive Observer-Based Time Varying Fault Estimation
This paper presents a new observer design methodology for a time varying actuator fault estimation. A new linear matrix inequality (LMI) design algorithm is developed to tackle the limitations (e.g. equality constraint and robustness problems) of the well known so called fast adaptive fault estimation observer (FAFE). The FAFE is capable of estimating a wide range of time-varying actuator fault...
متن کاملCross-Sectional Relative Price Variability and Inflation in Turkey: Time Varying Estimation
Abstract This study investigates the empirical validity of the variability hypothesis in Turkey for the period of February 2005-November 2015, by using cross-sectional relative price data and by focusing on the assumptions of linearity and stability. The linearity assumption between the two variables is ensured by estimating quadratic regression equation. The assumption of stability is secur...
متن کاملBayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملEvaluation of Univariate, Multivariate and Combined Time Series Model to Prediction and Estimation the Mean Annual Sediment (Case Study: Sistan River)
Erosion, sediment transport and sediment estimate phenomenon with their damage in rivers is a one of the most importance point in river engineering. Correctly modeling and prediction of this parameter with involving the river flow discharge can be most useful in life of hydraulic structures and drainage networks. In fact, using the multivariate models and involving the effective other parameter...
متن کاملSub-optimal Estimation of HIV Time-delay Model using State-Dependent Impulsive Observer with Time-varying Impulse Interval: Application to Continuous-time and Impulsive Inputs
Human Immunodeficiency Virus (HIV) weakens the immune system in confronting various diseases by attacking to CD4+T cells. In modeling HIV behavior, the number of CD4+T cells is considered as the output. But, continuous-time measurement of these cells is not possible in practice, and the measurement is only available at variable intervals that are several times bigger than sampling time. In this...
متن کامل